Maximum Likelihood and Maximum Mutual Information Training in Gender and Age Recognition System

نویسندگان

  • Valiantsina Hubeika
  • Igor Szöke
  • Lukás Burget
  • Jan Cernocký
چکیده

Gender and age estimation based on Gaussian Mixture Models (GMM) is introduced. Telephone recordings from the Czech SpeechDatEast database are used as training and test data set. Mel-Frequency Cepstral Coefficients (MFCC) are extracted from the speech recordings. To estimate the GMMs’ parameters Maximum Likelihood (ML) training is applied. Consequently these estimations are used as the baseline for Maximum Mutual Information (MMI) training. Results achieved when employing both ML and MMI training are presented and discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementing and Improving MMIE Training in SphinxTrain

Discriminative training schemes, such as Maximum Mutual Information Estimation (MMIE), have been used to improve the accuracy of speech recognition systems trained using Maximum Likelihood Estimation (MLE). In this paper, we present the implementation details of MMIE training in SphinxTrain and baseline results for MMIE training on the Wall Street Journal (WSJ) SI84 and SI284 data sets. This pa...

متن کامل

Aging speech recognition with speaker adaptation techniques: Study on medium vocabulary continuous Bengali speech

The article describes the speech recognition system development in Bengali language for aging population with various adaptation techniques. Variability in acoustic characteristics among different speakers degrades speech recognition accuracy. In general, perceptual as well as acoustical variations exists among speakers, but variations are more pronounced between young and aged population. Devi...

متن کامل

Large Scale Mmie Training for Conversational Telephone Speech Recognition

This paper describes a lattice-based framework for maximum mutual information estimation (MMIE) of HMM parameters which has been used to train HMM systems for conversational telephone speech transcription using up to 265 hours of training data. These experiments represent the largest-scale application of discriminative training techniques for speech recognition of which the authors are aware, a...

متن کامل

Discriminative training of HMM using maximum normalized likelihood algorithm

In this paper, we present the Maximum Normalized Likelihood Estimation (MNLE) algorithm and its application for discriminative training of HMMs for continuous speech recognition. The objective of this algorithm is to maximize the normalized frame likelihood of training data. Instead of gradient descent techniques usually applied for objective function optimization in other discriminative algori...

متن کامل

SELECTIVE TRAINING FOR HIDDEN MARKOVMODELS with APPLICATIONS to SPEECHCLASSIFICATIONbyLevent

Traditional maximum likelihood estimation of hidden Markov model parameters aims at maximizing the overall probability across the training tokens of a given speech unit. Therefore, it disregards any interaction and biases across the models in the training procedure. Often the resulting model parameters do not result in minimum error classiication in the training set. A new selective training me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007